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Abstract

The electrocardiogram (ECG) offers an accessible and
non-invasive assessment of human health. Chagas disease,
which affects nearly 6.5 million people across Central and
South America, is known to have symptoms that appear in
ECGs. Using machine learning techniques, critical infor-
mation can be extracted from these ECGs to detect Chagas
disease. As part of the George B. Moody PhysioNet Chal-
lenge 2025, we developed a classification approach con-
sisting of two components: (1) a multi-view representation
of 12-lead ECGs; (2) ensemble classification. Our team,
GAIN-ECG, introduced this novel approach that combines
kernel-based feature extraction through MiniRocket with
classical signal features, such as Heart Rate Variabil-
ity (HRV), Discrete Wavelet Transform (DWT), and Fast
Fourier Transform (FFT) features, through early fusion.
We then employ an ensemble framework to classify the on-
set of Chagas disease. With repeated scoring on the chal-
lenge’s hidden validation and test sets, our model received
a challenge score of 0.090 and 0.082, respectively.

1. Introduction

As team GAIN-ECG, we participated in the 2025
George B. Moody PhysioNet Challenge. This challenge
invited teams to develop automated and open-sourced al-
gorithms for classifying cases of Chagas from electrocar-
diograms (ECG) [1H3]]. Although ECG-based diagnoses
of Chagas disease can often be inaccurate, they can inform
the use of limited and invasive serological tests.

Our team’s Challenge entry tackles this classification
task through a novel two-stage approach utilizing multi-
view representations of 12-lead ECGs and ensemble learn-
ing. The core idea is to leverage a diverse set of ECG rep-
resentations, including heart rate variability, wavelet trans-
formation, Fourier transformation, and convolutional ker-
nels. We hypothesize that each representation introduces
a distinct inductive bias. By integrating them together and
further exploiting this idea through an ensemble learning
framework for the final classification, we aim to capture
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complementary information and improve performance.
2. Methods

Our two-stage multi-view ensemble classification
framework consist of two key components: (1) multi-
view ECG representation learning, and (2) an ensem-
ble classifier. The multi-view representation learning
module is designed to capture the characteristics of in-
put ECG signals from multiple, complementary perspec-
tives. The ensemble classifier [4f] follows a similar princi-
ple, leveraging diverse base classifiers with different in-
ductive biases to enhance predictive performance. As
shown in Figure |1} our framework begins by extracting
classical features from four different views: Heart Rate
Variability [5] (HRV), Discrete Wavelet Transform [6]]
(DWT), Fast Fourier Transform [[7] (FFT), and convolu-
tional kernel-based representation [§] (ConvK). The multi-
view features are then concatenated to be feed into the en-
semble classifier [9]], which utilizes base classifiers with
different induction bias.

2.1. Multi-View ECG Representation Learn-
ing

We denote one raw input 12-lead 400Hz ECG record as
x € REXT where L = 12 and T is originally variable
depending on the record length (e.g., 7 or 10 seconds). To
maintain consistency across samples, each signal is either
truncated or zero-padded to a fixed length of T' = 4096.
Heart Rate Variability Representation. We opt for HRV
as one view of ECG representation, which quantifies the
variation in time intervals between consecutive heartbeats.
To extract the HRV features, we first detect R-peaks in
each ECG record (the tallest spikes in the QRS complex).
For each individual lead x() € RT, this is achieved by

finding a set C of all local-maxima in the signal:
C={re{2,...,T—1}: 0
xt-1] < xP[1] > xP[t +1]}.

To ensure the plausibility of our peaks, we enforce a
minimum distance of 200 ms between consecutive peaks,
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Figure 1. Overview of Proposed Framework. Every
ECG signal is first processed through the feature extrac-
tors in the first component to create multi-view ECG rep-
resentations. Then, Chagas diagnosis is determined by an
ensemble classifier in the second component.

which corresponds to a maximum heart rate of 300 bpm.
R-peaks are then greedily selected from C' under this
constraint. Based on the obtained R-peaks, we derive
the following time-domain HRV features: (1) number of
peaks (R), (2) mean RR intervals (RR) that capture the
beat-to-beat timing; (3) Standard Deviation of RR inter-
vals (SDNN) that reflects overall heart rate variability; (4)
Root Mean Square of Successive Differences (RMSSD)
that emphasizes short-term variability between consecu-
tive beats. The sequence of RR intervals are obtained by
RR; = Cg,, — Cg, where Cg,, denotes the time of
the i-th R-peak in C. After concatenating HRV features
from all 12 leads, we obtain the HRV view representation
as hyry = R ® RR @ SDNN & RMSSD.

Discrete Wavelet Transform Representation. Applying
a 4-level DWT decomposition to each individual lead us-
ing Daubechies-4 (db4) wavelet, we get detailed coeffi-
cients dy at levels ¢ = 1,2,3,4 (ignoring approximation
coefficients). The energy at level ¢ is

ne
Eo(x) = dlkP, £=1,2,3,4, )
k=1

where d are the detail coefficients of the signal x(” at level
¢ after DWT, n, is the number of coefficients, and k is
the index of the coefficient within the level. These energy
features capture the power of oscillations across 4 different
frequency scales. Processing each lead individually and
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Figure 2. Overview of AutoGluon Ensemble Classifier.
Base models are first trained with bagging, then organized
into stacked layers.

concatenating, the DWT representation can be denoted as
hDWT = E]_(X) (&) E2 (X) D E3 (X) (&) E4(X).

Fast Fourier Transform Representation. To extract the
FFT features, we first subsample signals down to 200Hz
to reduce computational complexity while preserving the
dominant oscillatory components. This allows the model
to capture global spectral patterns that may be overlooked
by R-peak statistics or wavelet energies. Applying the
FFT [7] to each subsampled signal of length N yields a
set of complex coefficients B and corresponding frequency
bins F. Since ECG signals are real-valued, their FFTs are
symmetric about zero, and we retain only the non-negative
frequencies. The amplitudes A are computed by

for F; > 0. 3)

The resulting representation is formed by concatenation
across all leads as hgrr = F @ A.

Convolutional Kernel-Based Representation. We fur-
ther apply convolutional kernels to ECG signals to cap-
ture meaningful patterns such as shape, frequency, and
variance. This is achieved through the MiniRocket en-
coder [8]], which uses a set of fixed kernels applied at mul-
tiple temporal scales. Each kernel response is summarized
using the Proportion of Positive Values (PPV) statistic,

N -
[M]=

PPV 4= 1((X(i) *ka)lt] > qra)- “)

t=1

where (x() % ky)[f] is the convolution of the signal x(¥)
with kernel k at dilation d, and g, q is a bias threshold. In
MiniRocket, dilations d are selected to evenly span a range
of temporal scales, allowing each kernel to capture patterns
across temporal scales. Bias thresholds g, ¢ are computed
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Training Validation
Model Name Score AUROC AUPRC |  Score
RF+Cross Entropy 0.266 0.802 0.087 0.062
RF+Focal Loss 0.226 0.761 0.067 N/A
ConvK+RF 0.354 0.821 0.124 N/A
ConvK+AG 0.399 0.836 0.168 N/A
Multi-View+AG 0410  0.853 0.177 0.090
Multi-View+AG+BE 0.426 0.861 0.205 0.085
ECGFounder+AG+BE | 0.481 0.880 0.242 0.054

Table 1. Ablation Study Illustrating Incremental Im-
provements in performance as kernel-based features, the
AutoGluon ensemble, and additional signal features are in-
troduced into the model.

as quantiles of the convolution outputs on the training data,
ensuring that each kernel-dilation pair produces a balanced
distribution of activations.

We configure the encoder with 504 kernels, which cor-
respond to MiniRocket’s base set of 84 kernels applied
across 6 different dilations. Since ECGs are multivari-
ate, kernel outputs are aggregated before computing their
PPVs. These PPV values then form the convolutional
kernel-based view representations as hconk = Q.

2.2. Ensemble Classifier

From the multi-view ECG representation learning, we
obtain the final multi-view vector representation h =
hyry © hpwt D hrrr @ heomk @ hsiar, Wwhere we further
calculate the means and standard deviations of each indi-
vidual ECG lead to obtain hg,. For our classification task,
we employ the state-of-the-art ensemble tabular predictor
fo via AutoGluon-V1.3.0 (AG) [9], thus § = fp(h). Ina
nutshell, the ensemble classifier fy incorporate a set of M
weak classifiers to make distinct predictions §; = fp ;(h),
and the final ensemble prediction is obtained through a
greedy weighted combination:

M
§=> wifsi(h), )
i=1

where w; are non-negative weights optimized by the en-
semble algorithm. A wide range of weak classifiers is in-
cluded: KNN, RF, boosting models (e.g., CatBoost, XG-
Boost, GBM), and tabular neural networks. Specifically,
we configured AG to the “best quality” preset and im-
posed a 24-hour time limit on training. This further in-
troduce advanced ensemble techniques over Eq. () by
multi-layer stack ensembling and repeated k-fold bagging
techniques [9]], as can be seen in Figure Q} The multi-
layer stack extends the traditional ensemble framework by
adding more layers over the first layer of base models,
sharing the same principle as a multi-layer neural network.
A skip connection [[10]] of multi-view ECG representation
is added to further augment the second layer input. The re-

Training | Validation | Test | Ranking
0410 | 0090 | 0082 | 30740

Table 2. Challenge Scores for Our Selected Entry (team
GAIN-ECG). We used an internal 80%/20% split on the
public training set, repeated scoring on the hidden valida-
tion set, and repeated scoring on the hidden test set.

peated k-fold bagging [11]] further improve the prediction
performance of each base model by fitting k copies of each
base model with a different data chunk held out from each

copy.
3. Results

Using the dataset available from the challenge [12-
16], we performed an ablation study with an 80%/20%
train/test split to track the benefit of each component we
added to our model. For each model, we compute the
training challenge score, area under the receiver oper-
ating characteristic curve (AUROC), and area under the
precision-recall curve (AUPRC). We began with a basic
RF on signal means and standard deviations with cross-
entropy loss. Next, we replaced cross-entropy with focal
loss, which led to a drop in performance. We then intro-
duced convolutional kernel-transformed features (ConvK)
derived from MiniRocket. Afterwards, we switched the
classifier from RF to AG’s ensemble framework. In the
following step, we fused the additional signal features with
the ConvK features. Finally, we experimented with statis-
tical batch-effect elimination techniques (BE), such as z-
score normalization and data weighting, and explored re-
placing the MiniRocket encoder with an ECG foundation
model (ECGFounder [17]).

Based on the ablation study, we finalized our approach
by fusing features from multiple ECG representations and
classifying the resulting multi-view feature vectors with an
AG-based ensemble classifier. During the unofficial phase
of the challenge, this model achieved a score of 0.564.
During the official phase, our model was then validated
and ranked with repeated scoring on the hidden validation
and test set, as shown in Table

4. Discussion and Conclusions

By combining multi-view ECG representations with en-
semble modeling, our approach was able to achieve a
higher challenge score than purely using an RF classifier
with ConvK features during training. The integration of
classical signal features with kernel-based features pro-
vided a richer representation of ECG to the more robust en-
semble framework. However, a comparison of the training,
validation, and test scores highlights that our model strug-
gles to generalize across datasets. First, the high AUROC
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scores are misleading in the context of the strong class
imbalance in Chagas disease. While the elevated training
challenge score suggests the model is accurate at its top 5%
most confident predictions, the low AUPRC reveals that it
generates many false positives at lower thresholds.

This lack of generalization can be attributed to the com-
position of the training set. Specifically, the public training
set comprises three distinct datasets: two small datasets
containing only positives or negatives, and a larger mixed
set. This structure led our model to exploit dataset-specific
artifacts rather than features that are truly indicative of
Chagas disease. Consequently, our model was most confi-
dent and accurate when classifying samples from the two
smaller homogeneous datasets. Because of the 5% thresh-
old, lower-confidence predictions from the larger mixed
dataset were excluded from the challenge score, inflating
the training score. However, when evaluated on the hidden
validation and test sets, this reliance on dataset-specific
features lead to a sharp drop in performance as the vali-
dation and test data came from entirely different sources.

In addition, this interpretation is further supported by the
drop in performance when switching from cross-entropy
to focal loss. Although focal loss is designed to address
extreme class imbalance, it instead amplified the domain
shift between datasets, pushing the model to focus even
more heavily on dataset-specific artifacts rather than gen-
eralizable features.

To mitigate the batch effect, we experimented with data
weighting, z-score normalizations, and foundation model
embeddings. While performance improved on the training
set, these adjustments did not translate to better general-
ization on the validation and test sets. Future work should
investigate more robust approaches, such as adversarial
training, to mitigate dataset-specific biases and improve
generalization for classifying highly imbalanced classes.
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